Thursday, 5 September 2013

Correlation & Regression

CORRELATION
In statistics, dependence refers to any statistical relationship between two random variables or two sets of data. Correlation refers to any of a broad class of statistical relationships involving dependence.
Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their offspring, and the correlation between the demand for a product and its price. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling; however, statistical dependence is not sufficient to demonstrate the presence of such a causal relationship (i.e., correlation does not imply causation).
Formally, dependence refers to any situation in which random variables do not satisfy a mathematical condition of probabilistic independence. In loose usage, correlation can refer to any departure of two or more random variables from independence, but technically it refers to any of several more specialized types of relationship between mean values. There are several correlation coefficients, often denoted ρ or r, measuring the degree of correlation. The commonest of these is the Pearson correlation coefficient, which is sensitive only to a linear relationship between two variables (which may exist even if one is a nonlinear function of the other). Other correlation coefficients have been developed to be more robust than the Pearson correlation – that is, more sensitive to nonlinear relationships. Mutual information can also be applied to measure dependence between two variables.
The most familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient, or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient". It is obtained by dividing the covariance of the two variables by the product of their standard deviationsThe Pearson correlation is defined only if both of the standard deviations are finite and both of them are nonzero. It is a corollary of the Cauchy–Schwarz inequality that the correlation cannot exceed 1 in absolute value. The correlation coefficient is symmetric: corr(X,Y) = corr(Y,X).
The Pearson correlation is +1 in the case of a perfect positive (increasing) linear relationship (correlation), −1 in the case of a perfect decreasing (negative) linear relationship (anticorrelation),[5]and some value between −1 and 1 in all other cases, indicating the degree of linear dependence between the variables. As it approaches zero there is less of a relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables.

Techniques in Determining Correlation
There are several different correlation techniques. The Survey System's optional Statistics Moduleincludes the most common type, called the Pearson or product-moment correlation. The module also includes a variation on this type called partial correlation. The latter is useful when you want to look at the relationship between two variables while removing the effect of one or two other variables.
Like all statistical techniques, correlation is only appropriate for certain kinds of data. Correlation works for quantifiable data in which numbers are meaningful, usually quantities of some sort. It cannot be used for purely categorical data, such as gender, brands purchased, or favorite color.

REGRESSION:                                                                                                    
In statisticsregression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables. More specifically, regression analysis helps one understand how the typical value of the dependent variable changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a quantile, or other location parameter of the conditional distribution of the dependent variable given the independent variables. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function, which can be described by a probability distribution.
Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. However this can lead to illusions or false relationships, so caution is advisable;for example, correlation does not imply causation.
A large body of techniques for carrying out regression analysis has been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the dataNonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional. statisticslinear regression is an approach to model the relationship between a scalar dependent variable y and one or more explanatory variablesdenoted X. The case of one explanatory variable is called simple linear regression.

Steps in such investigation
  1. Plot the data. In many cases the plot can tell us visually whether there seems to be a relationship: if there is some correlation, do the variables increase or decrease together?, does one decrease when the other increases? Also, is a straight line a suitable model to describe the relationship between the two variables, and so on. If we want to go beyond this qualitative level of analysis then simple linear regression is often a useful tool. This involves fitting a straight line through our data and investigating the properties of the fitted line. It is conventional to plot the Y- response variable on the vertical axis and the independent variable X on the horizontal axis.
  2. Plot the line of best fit. If the the plot suggests a linear relationship, we proceed to quantify the relationship between the two variables by fitting a regression line through the data points.
Using regression we can also fit many other types of models including those where we have more than one independent variable.


Submitted By:  Pragya Singh (2013203)

Group Members: Priyanka Doshi (2013212)
                           Poulami Sarkar (2013201)
                           Nilay Kohaley (2013172)
                           Pawan Agarwal (2013195)





No comments:

Post a Comment